These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Growth hormone enhances excitatory synaptic transmission in area CA1 of rat hippocampus. Author: Mahmoud GS, Grover LM. Journal: J Neurophysiol; 2006 May; 95(5):2962-74. PubMed ID: 16481459. Abstract: The hippocampus produces growth hormone (GH) and contains GH receptors, suggesting a potential role for GH signaling in the regulation of hippocampal function. In agreement with this possibility, previous investigations have found altered hippocampal function and hippocampal-dependent learning and memory after chronic GH administration or deficiency. In this study we applied GH to in vitro rat hippocampal brain slices, to determine whether GH has short-term effects on hippocampal function in addition to previously documented chronic effects. We found that GH enhanced both AMPA- and NMDA-receptor-mediated excitatory postsynaptic potentials (EPSPs) in hippocampal area CA1, but did not alter GABA(A)-receptor-mediated inhibitory synaptic transmission. GH enhancement of excitatory synaptic transmission was gradual, requiring 60-70 min to reach maximum, and occurred without any change in paired-pulse facilitation, suggesting a possible postsynaptic site of action. In CA1 pyramidal neurons, GH enhancement of EPSPs was correlated with significant hyperpolarization and decreased input resistance. GH enhancement of EPSPs required Janus kinase 2 (JAK2), phosphatidylinositol-3 (PI3) kinase, mitogen-activated protein (MAP) kinase kinase (MEK), and synthesis of new proteins. Although PI3 kinase and MEK were required for initiation of GH effects on excitatory synaptic transmission, they were not required for maintained enhancement of EPSPs. GH treatment and tetanus-induced long-term potentiation were mutually occluding, suggesting a common mechanism or mechanisms in both forms of synaptic enhancement. Our results demonstrate that GH has powerful short-term effects on hippocampal function, and extend the timescale for potential roles of GH in regulating hippocampal function and hippocampal-dependent behaviors.[Abstract] [Full Text] [Related] [New Search]