These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A pseudodifferential amplifier for bioelectric events with DC-offset compensation using two-wired amplifying electrodes. Author: Degen T, Jäckel H. Journal: IEEE Trans Biomed Eng; 2006 Feb; 53(2):300-10. PubMed ID: 16485759. Abstract: Most wired active electrodes reported so far have a gain of one and require at least three wires. This leads to stiff cables, large connectors and additional noise for the amplifier. The theoretical advantages of amplifying the signal on the electrodes right from the source has often been described, however, rarely implemented. This is because a difference in the gain of the electrodes due to component tolerances strongly limits the achievable common mode rejection ratio (CMRR). In this paper, we introduce an amplifier for bioelectric events where the major part of the amplification (40 dB) is achieved on the electrodes to minimize pick-up noise. The electrodes require only two wires of which one can be used for shielding, thus enabling smaller connecters and smoother cables. Saturation of the electrodes is prevented by a dc-offset cancelation scheme with an active range of +/- 250 mV. This error feedback simultaneously allows to measure the low frequency components down to dc. This enables the measurement of slow varying signals, e.g., the change of alertness or the depolarization before an epileptic seizure normally not visible in a standard electroencephalogram (EEG). The amplifier stage provides the necessary supply current for the electrodes and generates the error signal for the feedback loop. The amplifier generates a pseudodifferential signal where the amplified bioelectric event is present on one lead, but the common mode signal is present on both leads. Based on the pseudodifferential signal we were able to develop a new method to compensate for a difference in the gain of the active electrodes which is purely software based. The amplifier system is then characterized and the input referred noise as well as the CMRR are measured. For the prototype circuit the CMRR evaluated to 78 dB (without the driven-right-leg circuit). The applicability of the system is further demonstrated by the recording of an ECG.[Abstract] [Full Text] [Related] [New Search]