These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Measurement of nitrogen dioxide in cigarette smoke using quantum cascade tunable infrared laser differential absorption spectroscopy (TILDAS).
    Author: Shorter JH, Nelson DD, Zahniser MS, Parrish ME, Crawford DR, Gee DL.
    Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2006 Apr; 63(5):994-1001. PubMed ID: 16490384.
    Abstract:
    Although nitrogen dioxide (NO(2)) has been previously reported to be present in cigarette smoke, the concentration estimates were derived from kinetic calculations or from measurements of aged smoke, where NO(2) was formed some time after the puff was taken. The objective of this work was to use tunable infrared laser differential absorption spectroscopy (TILDAS) equipped with a quantum cascade (QC) laser to determine if NO(2) could be detected and quantified in a fresh puff of cigarette smoke. A temporal resolution of approximately 0.16s allowed measurements to be taken directly as the NO(2) was formed during the puff. Sidestream cigarette smoke was sampled to determine if NO(2) could be detected using TILDAS. Experiments were conducted using 2R4F Kentucky Reference cigarettes with and without a Cambridge filter pad. NO(2) was detected only in the lighting puff of whole mainstream smoke (without a Cambridge filter pad), with no NO(2) detected in the subsequent puffs. The measurement precision was approximately 1.0 ppbVHz(-1/2), which allows a detection limit of approximately 0.2 ng in a 35 ml puff volume. More NO(2) was generated in the lighting puff using a match or blue flame lighter (29+/-21 ng) than when using an electric lighter (9+/-3 ng). In the presence of a Cambridge filter pad, NO(2) was observed in the gas phase mainstream smoke for every puff (total of 200+/-30 ng/cigarette) and is most likely due to smoke chemistry taking place on the Cambridge filter pad during the smoke collection process. Nitrogen dioxide was observed continuously in the sidestream smoke starting with the lighting puff.
    [Abstract] [Full Text] [Related] [New Search]