These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Receptor pharmacology.
    Author: Young A.
    Journal: Adv Pharmacol; 2005; 52():47-65. PubMed ID: 16492540.
    Abstract:
    Despite clear evidence for a distinct amylin pharmacology and localization of such pharmacology to sites such as the nucleus accumbens,efforts to clone an amylin receptor were fruitless for over a decade. This enigma led many to doubt the status of amylin as a bona fide hormone. Yet it became apparent during those cloning efforts that, whatever the amylin receptor was, it was somehow similar to a calcitonin receptor. The enigma of the amylin receptor was solved following the identification of receptor activity modifying proteins (RAMPs). These single transmembrane spanning molecules, when associated with a calcitonin receptor, altered its pharmacology from calcitonin-preferring to amylin-preferring. With at least two forms of the calcitonin receptor and three forms of RAMP, there is the potential for six subtypes of amylin receptors. Of these, two appear to predominate. The CTa (shorter form) calcitonin receptor, dimerized with RAMP1 [amylin 1 (a) receptor], appears to represent binding sites at the nucleus accumbens and the subfornical organ. Binding sites at area postrema appear to be composed of CTa + RAMP3 [amylin3 (a) receptors]. Thus far, RAMP proteins have been associated in vivo only with the CT/CLR receptor system. It is presently unknown whether RAMPs are more general modulators of receptor function, dynamically modifying responsivity with time or across other receptor classes. The largest and first identified amylin-binding field was in the nucleus accumbens. The function of these receptors is yet undetermined, but because the nucleus accumbens is within the blood-brain barrier, the cognate ligand is unlikely to be circulating amylin. Dense amylin binding is present at the circumventricular organs, including the subfornical organ, the organum vasculosum lateralis terminalis (OVLT), and the area postrema. There is no diffusional (blood-brain) barrier at these structures, so they most likely respond to circulating (beta-cell-derived) amylin. Despite pharmacological evidence of amylin sensitivity in several peripheral tissues, selective amylin binding outside of the brain is observed only in the renal cortex. The newly designated amylinomimetic drug class was defined on the basis of its unique pharmacology prior to the molecular characterization of amylin receptors. Currently, the class includes any agent that acts as antagonist at characterized amylin receptors. Several peptides, typically analogs of truncated salmon calcitonin, have been developed as potent and selective amylin antagonists and have been useful in identifying amylinergic responses. Of these, AC187 (30Asn32Tyr[8-32]sCT; Amylin Pharmaceuticals Inc.) is particularly selective and potent, and has been most often cited in studies using amylin antagonists. Antagonism of a response with an order of potency of AC187> AC66 > CGRP[8-37] is suggestive that it is mediated via amylin receptors. Activation of a response with salmon calcitonin (sCT) > amylin >calcitonin gene-related peptide (CGRP) > mammalian CT suggests activation via the amylinl (a) receptor, while sCT = amylin >> CGRP >mammalian CT suggests activation via amylin3 (a) receptors. Absence of response to other ligands (e.g., adrenomedullin) is useful for excluding certain pharmacologies.
    [Abstract] [Full Text] [Related] [New Search]