These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Thermal responses of ex vivo human skin during multiple cryogen spurts and 1,450 nm laser pulses. Author: Zhang R, Ramirez-San-Juan JC, Choi B, Jia W, Aguilar G, Kelly KM, Nelson JS. Journal: Lasers Surg Med; 2006 Feb; 38(2):137-41. PubMed ID: 16493678. Abstract: BACKGROUND AND OBJECTIVE: Although cryogen spray cooling (CSC) is used to minimize the risk of epidermal damage during laser dermatologic surgery, concern has been expressed that CSC may induce cryo-injury. The objective of this study is to measure temperature variations at the epidermal-dermal junction in ex vivo human skin during three clinically relevant multiple cryogen spurt-laser pulse sequences (MCS-LPS). STUDY DESIGN/MATERIALS AND METHODS: The epidermis of ex vivo human skin was separated from the dermis and a thin-foil thermocouple (13 microm thickness) was inserted between the two layers. Thermocouple depth and epidermal thickness were measured using optical coherence tomography (OCT). Skin specimens were preheated to 30 degrees C before the MCS-LPS were initiated. Three MCS-LPS patterns, with total cryogen spray times of 38, 30, and 25 milliseconds respectively, were applied to the specimens in combination with laser fluences of 10 and 14 J/cm(2), while the thermocouple recorded the temperature changes at the epidermal-dermal junction. RESULTS: The thermocouple effectively recorded fast temperature changes during three MCS-LPS patterns. The lowest temperatures measured corresponded to the sequences with longer pre-cooling cryogen spurts. No sub-zero temperatures were measured for any of the MCS-LPS patterns under study. CONCLUSIONS: The three clinically relevant MCS-LPS patterns evaluated in this study do not cause sub-zero temperatures in ex vivo human skin at the epidermal-dermal junction and, therefore, are unlikely to cause significant cryogen induced epidermal injury.[Abstract] [Full Text] [Related] [New Search]