These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The tiron free radical as a sensitive indicator of chloroplastic photoautoxidation.
    Author: Miller RW, Macdowall FD.
    Journal: Biochim Biophys Acta; 1975 Apr 14; 387(1):176-87. PubMed ID: 164939.
    Abstract:
    Wheat chloroplasts photochemically reduced molecular oxygen, as a Hill oxidant in the Mehler reaction, to superoxide anion which then oxidized added 1,2-dihydroxybenzene-3,5-disulfonate to its semiquinone, a comparatively stable free radical at pH 7. The last mentioned reaction was rapid in aqueous solution, but the rate of formation of 1,2-dihydroxybenzene-3,5-disulfonate semiquinone by the chloroplast system was calculated as T1 of 0.6 s. The Mehler reaction, or more specifically the univalent reduction of oxygen by Photosystem I, was rate-limiting so that the 1,2-dihydroxybenzene-3,5-disulfonate seniquinone was a useful spin probe for superoxide anion production at room temperature. The ESR signal of 1,2-dihydroxybenzene-3,5-disulfonate semiquinone was proportional to its steady state concentration and decayed in the dark with a T1/2 of 5-6 s. This oxygen-dependent signal was enhanced by mediation of chloroplastic oxygen reduction through methyl viologen. The superoxide anion scavengers ascorbate and L-epinephrine competitively obscured 1,2-dihydroxybenzene-3,5-disulfonate semiquinone formation, butadded superoxide dismutase was not as effective in this role. Partial inhibition by superoxide dismutase was achieved only by preincubation of Photosystem I enriched particles with ten times the endogenous concentration of superoxide dismutase. This and the persistence of a small amount of a 1,2-dihydroxybenzene-3,5-disulfonate (Tiron) oxidizing species in the dark supports the concept of Tiron accessibility but not the superoxide dismutase accessibility of superoxide anion bound in its formative enzyme complex. Benzoquinone and naphthoquinone disulfonate also reacted with superoxide anion, and supported both the Hill reaction and the Mehler reaction as final oxidants of both water and superoxide anion.
    [Abstract] [Full Text] [Related] [New Search]