These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Efficacy and potential for resistance selection of antipseudomonal treatments in a mouse model of lung infection by hypermutable Pseudomonas aeruginosa. Author: Maciá MD, Borrell N, Segura M, Gómez C, Pérez JL, Oliver A. Journal: Antimicrob Agents Chemother; 2006 Mar; 50(3):975-83. PubMed ID: 16495260. Abstract: Hypermutable Pseudomonas aeruginosa strains are found with high frequency in the lungs of patients with chronic infections and are associated with high antibiotic resistance rates. The in vivo consequences of hypermutation for treatment in a mouse model of lung infection using strain PAO1 and its hypermutable derivative PAOdeltamutS are investigated. Groups of 30 mice were treated for 3 days with humanized regimens of ciprofloxacin (CIP), tobramycin (TOB), CIP plus TOB, or placebo, and mortality, total lung bacterial load, and 4x- and 16x-MIC mutants were recorded. The rates of mutation and the initial in vivo frequencies of mutants (at the onset of treatment) were also estimated and the in vitro- and in vivo-selected mutants characterized. Since both strains had identical MICs, the same pharmacokinetic/pharmacodynamic (PK/PD) parameters were obtained: area under the 24-h concentration-time curve (fAUC)/MIC = 385 for CIP and maximum concentration of drug in serum (fC(max))/MIC = 19 for TOB. Despite adequate PK/PD parameters, persistence of high bacterial numbers and amplification (50,000-fold) of resistant mutants (MexCD-OprJ hyperexpression) were documented with CIP treatment for PAOdeltamutS, in contrast to complete resistance suppression for PAO1 (P < 0.01), showing that conventional PK/PD parameters may not be applicable to infections by hypermutable strains. On the other hand, the efficacy of TOB monotherapy in terms of mortality reduction and bacterial load was very low regardless of the strain but not due to resistance development, since mutants were not selected for PAO1 and were only modestly amplified for PAOdeltamutS. Finally, the CIP-plus-TOB combination was synergistic, further reducing mortality and bacterial load and completely preventing resistance even for PAOdeltamutS (P < 0.01 compared to monotherapy), showing that it is possible to suppress resistance selection in infections by hypermutable P. aeruginosa using appropriate combined regimens.[Abstract] [Full Text] [Related] [New Search]