These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ab initio and direct quasiclassical-trajectory study of the Cl + CH4-->HCl + CH3 reaction. Author: Troya D, Weiss PJ. Journal: J Chem Phys; 2006 Feb 21; 124(7):74313. PubMed ID: 16497042. Abstract: We present an electronic structure and dynamics study of the Cl + CH(4)--> HCl + CH(3) reaction. We have characterized the stationary points of the ground-state potential-energy surface using various electronic structure methods and basis sets. Our best calculations, CCSD(T) extrapolated to the complete basis-set limit based on geometries and harmonic frequencies obtained at the CCSD(T)/aug-cc-pvtz level, are in agreement with the experimental reaction energy and indirect measurements of the barrier height. Using ab initio information, we have reparametrized a semiempirical Hamiltonian so that the predictions of the improved Hamiltonian agree with the higher-level calculations in various regions of the potential-energy surface. This improved semiempirical Hamiltonian is then used to propagate quasiclassical trajectories and characterize the reaction dynamics. The good agreement of the calculated HCl rotational and angular distributions with the experiment indicates that reparametrizing semiempirical Hamiltonians is a promising approach to derive accurate potential-energy surfaces for polyatomic reactions. However, excessive energy leakage from the initial vibrational energy of the CH(4) molecule to the reaction coordinate in the trajectory calculations calls into question the suitability of the standard quasiclassical-trajectory method to describe energy partitioning in polyatomic reactions.[Abstract] [Full Text] [Related] [New Search]