These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). Author: Dong J, Wu F, Zhang G. Journal: Chemosphere; 2006 Sep; 64(10):1659-66. PubMed ID: 16497361. Abstract: Tomato (Lycopersicon esculentum) seedlings were grown in four cadmium (Cd) levels of 0-10 microM in a hydroponic system to analyze the antioxidative enzymes, Cd concentration in the plants, and the interaction between Cd and four microelements. The results showed that there was a significant increase in malondialdehyde (MDA) concentration, and superoxide dismutase (SOD) and peroxidase (POD) activities in the plants subjected to 1-10 microM Cd. This indicates that Cd stress induces an oxidative stress response in tomato plants, characterized by an accumulation of MDA and increase in activities of SOD and POD. Root, stem and leaf Cd concentrations increased with its exposure Cd level, and the highest Cd concentration occurred in roots, followed by leaves and stems. A concentration- and tissue-dependent response was found in the four microelement concentrations to Cd stress in the tomato leaves, stems and roots. Regression analysis showed that there was a significantly negative correlation between Cd and Mn, implying the antagonistic effect of Cd on Mn absorption and translocation. The correlation between Cd and Zn, Cu and Fe were inconsistent among leaves, stems and roots.[Abstract] [Full Text] [Related] [New Search]