These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ca2+ regulation in detrusor smooth muscle from developing fetal sheep bladders. Author: Wu C, Sui G, Thiruchelvam N, Cuckow P, Fry CH. Journal: Cell Calcium; 2006 Apr; 39(4):367-74. PubMed ID: 16497375. Abstract: Sheep fetus is a useful model to study in utero bladder outflow obstruction but little is known about cell physiology of fetal bladders. To remedy this defect we have characterised intracellular Ca(2+) regulation in fetal sheep myocytes of different developmental ages. Fetal detrusor myocytes had a similar resting [Ca(2+)](i) to adult cells and exhibited transient [Ca(2+)](i) increases in response to carbachol, ATP, high-K, caffeine and low-Na. The carbachol transients were abolished by atropine and caffeine; the ATP response was blocked by alpha,beta-methylene ATP; high-K-evoked [Ca(2+)](i) rises were antagonised by verapamil. The maximal responses to carbachol, high-K, caffeine and low-Na in fetal cells were similar to those of adult counterparts, whilst the ATP response was smaller (p < 0.05). These variables were largely similar between the three gestational groups with the exception of ATP-induced response between early fetal and adult bladders (p < 0.05). Dose-response curves to carbachol demonstrated an increase of potency between mid-gestation and early adulthood (p < 0.05). These data show that muscarinic receptors coupled to intracellular Ca(2+) release, P2X receptor-linked Ca(2+) entry, depolarisation-induced Ca(2+) rise via L-type Ca(2+) channels, Na(+)/Ca(2+) exchange and functional intracellular Ca(2+) stores are all operational in fetal bladder myocytes. Whilst most of Ca(2+) regulators are substantially developed and occur at an early fetal age, a further functional maturation for cholinergic sensitivity and purinergic efficacy continues throughout to adulthood.[Abstract] [Full Text] [Related] [New Search]