These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A novel glass slide-based peptide array support with high functionality resisting non-specific protein adsorption. Author: Beyer M, Felgenhauer T, Ralf Bischoff F, Breitling F, Stadler V. Journal: Biomaterials; 2006 Jun; 27(18):3505-14. PubMed ID: 16499964. Abstract: Glass slides have been modified with a multifunctional poly(ethylene glycol) (PEG)-based polymer with respect to array applications in the growing field of proteome research. We systematically investigated the stepwise synthesis of the PEG films starting from self-assembled alkyl silane monolayers via monolayer peroxidation and subsequent graft polymerization of PEG methacrylate (PEGMA). Chemical composition was examined by X-ray photoelectron spectroscopy (XPS); infrared spectroscopy provided information about order and composition of the films as well; film thickness was determined by ellipsometry; using fluorescence microscopy and again XPS, the amount of proteins adsorbed on the slides was investigated. The novel support material allows a versatile modification of the amino group surface density up to 40 nmol/cm(2) for the linkage of probe molecules. Further on, we carried out standard peptide synthesis based on the well-established 9-fluorenylmethoxycarbonyl (Fmoc) chemistry, which was monitored by UV/Vis quantification of the Fmoc deblocking and mass spectrometry. The polymer coating is stable with respect to a wide range of chemical and thermal conditions, and prevents the glass surface from unspecific protein adsorption. Finally, we applied our modified glass slides in immunoassays and thus examined specific interactions of monoclonal antibodies with appropriate peptide epitopes.[Abstract] [Full Text] [Related] [New Search]