These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Human and chicken antibodies to gangliosides following infection by Campylobacter jejuni. Author: Usuki S, Taguchi K, Cawthraw SA, Shibata K, Ariga T, Newell DG, Yu RK. Journal: Exp Neurol; 2006 Jul; 200(1):50-5. PubMed ID: 16500643. Abstract: Campylobacteriosis is frequently associated with Guillain-Barré syndrome. Poultry are frequently highly colonized with Campylobacter jejuni and are a major foodborne vehicle for campylobacteriosis. In this study, high titer anti-GM1 antibodies were found in the serum of a laboratory worker who developed campylobacteriosis. The microbiologically confirmed strain VLA2/18 (non-serotyped) was isolated from the worker and subsequently inoculated into chickens, resulting in high titers of serum antibodies to GM1. However, none of the immunized chickens in our study showed any noticeable neurological symptoms, such as paralysis or cramping. High titer anti-GM1 antibodies in chicken and human sera strongly inhibited spontaneous muscle action potential in an in vitro system of spinal cord and muscle cell co-culture. In addition, infection of chickens with C. jejuni strains 81116 (HS6) and 99/419 (HS21) or immunization with purified GM1, GM2, and GM3 resulted in elevation of serum anti-ganglioside antibodies with an inhibitory effect on spontaneous muscle action potential. Immunoabsorption studies demonstrated that this inhibitory activity is due to anti-ganglioside antibodies. On the other hand, anti-GM1 is the only specific human serum antibody to induce an inhibitory effect on neuromuscular junctions. Chicken anti-GM1 antibodies showed a strong inhibitory effect, but anti-GM2 and -GM3 had weaker activities. Taken together, our data suggest that campylobacteriosis in chickens may provide a strong link between infection and the development of anti-ganglioside antibody-mediated peripheral nerve dysfunctions.[Abstract] [Full Text] [Related] [New Search]