These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Immunization with specific polysaccharide antigen reduces alterations in corneal proteoglycans during experimental slime-producing Staphylococcus epidermidis keratitis.
    Author: Georgakopoulos CD, Exarchou AM, Gartaganis SP, Kolonitsiou F, Anastassiou ED, Dimitracopoulos G, Hjerpe A, Theocharis AD, Karamanos NK.
    Journal: Curr Eye Res; 2006 Feb; 31(2):137-46. PubMed ID: 16500764.
    Abstract:
    PURPOSE: Staphylococcus epidermidis is a leading cause of bacterial keratitis associated with corneal damage. Corneal integrity is closely associated with matrix macromolecules, such as proteoglycans (PGs) and collagen. The aim of this study was to examine whether active immunization (AI) using a major immunogenic polysaccharide determinant of slime (20-kDa PS) as antigen, and passive immunization (PI) after administration of specific antibodies toward 20-kDa PS affect the distribution of PGs as well as corneal lesions in an experimental model of slime-producing S. epidermidis keratitis. METHODS: For AI, seven rabbits were immunized with 20-kDa PS, whereas for PI, seven rabbits received specific antibodies against 20-kDa PS. Lesions were graded clinically for a 21-day period. Levels of 20-kDa PS antibodies in serum and aqueous humor in both immunization groups were determined by ELISA. The distribution of certain extracellular matrix PGs during corneal healing was analyzed immunohistochemically. RESULTS: Levels of specific anti-20-kDa PS antibodies in serum and aqueous humor obtained after either AI or PI were significantly higher as compared with those in the respective nonimmunized control groups (p<0.001). Clinical grading showed that both AI and PI rabbits had a significantly less corneal damage as compared with infected nontreated rabbits. Immunohistochemical analyses for PGs exhibited significant differences to the wounded regions as compared with noninfected corneal tissue. Accumulation of keratan sulfate PGs and decorin was observed in the corneal stroma of infected rabbits and of heparan sulfate PGs around the new-formed vessels. This phenomenon was significantly reduced in immunized animals in accordance with macroscopically decreased corneal damage observed in these animals. CONCLUSIONS: Results of this study suggest a key role of 20-kDa PS and its antibodies as prophylactic and therapeutic agents in keratitis caused by slime-producing S. epidermidis.
    [Abstract] [Full Text] [Related] [New Search]