These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Wood stimulates the demethoxylation of [O14CH3]-labeled lignin model compounds by the white-rot fungi Phanerochaete chrysosporium and Phlebia radiata.
    Author: Niemenmaa O, Uusi-Rauva A, Hatakka A.
    Journal: Arch Microbiol; 2006 May; 185(4):307-15. PubMed ID: 16502311.
    Abstract:
    Mineralization of polymeric wood lignin and its substructures is a result of complex reactions involving oxidizing and reducing enzymes and radicals. The degradation of methoxyl groups is an essential part of this process. The presence of wood greatly stimulates the demethoxylation of a non-phenolic lignin model compound (a [O(14)CH(3)]-labeled beta-O-4 dimer) by the lignin-degrading white-rot fungi Phlebia radiata and Phanerochaete chrysosporium. When grown on wood, both fungi produced up to 47 and 40% (14)CO(2) of the applied (14)C activity, respectively, under air and oxygen in 8 weeks. Without wood, the demethoxylation of the dimer by both fungi was lower, varying between 0.5 and 35%. Addition of nutrient nitrogen together with glucose decreased demethoxylation when the fungi were grown on spruce wood under air. Because the evolution of (14)CO(2) in the absence of wood was poor, the fungi may have preferably used wood as a carbon and nitrogen source. The amount of fungal mycelium, as determined by the ergosterol assay, did not show connection to demethoxylation. P. radiata also showed a high demethoxylation of [O(14)CH(3)]-labeled vanillic acid in the presence of birch wood. The degradation of lignin and lignin-related substances should be studied in the presence of wood, the natural substrate for white-rot fungi.
    [Abstract] [Full Text] [Related] [New Search]