These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Targeting signal transducer and activator of transcription 3 with G-quartet oligonucleotides: a potential novel therapy for head and neck cancer.
    Author: Jing N, Zhu Q, Yuan P, Li Y, Mao L, Tweardy DJ.
    Journal: Mol Cancer Ther; 2006 Feb; 5(2):279-86. PubMed ID: 16505101.
    Abstract:
    Signal transducer and activator of transcription 3 (Stat3) is a critical mediator of oncogenic signaling activated frequently in many types of human cancer where it contributes to tumor cell growth and resistance to apoptosis. Stat3 has been proposed as a promising target for anticancer drug discovery. Recently, we developed a series of G-quartet oligodeoxynucleotides (GQ-ODN) as novel and potent Stat3 inhibitors, which significantly suppressed the growth of prostate and breast tumors in nude mice. In the present study, we showed that GQ-ODN specifically inhibited DNA-binding activity of Stat3 as opposed to Stat1. Computer-based docking analysis revealed that GQ-ODN predominantly interacts with the SH2 domains of Stat3 homodimers to destabilize dimer formation and disrupt DNA-binding activity. We employed five regimens in the treatment of nude mice with tumors of head and neck squamous cell carcinoma (HNSCC): placebo, paclitaxel, GQ-ODN T40214, GQ-ODN T40231, and T40214 plus paclitaxel. The mean size of HNSCC tumors over 21 days only increased by 1.7-fold in T40214-treated mice and actually decreased by 35% in T40214 plus paclitaxel-treated mice whereas the mean size of HNSCC tumors increased 9.4-fold in placebo-treated mice in the same period. These findings show that GQ-ODN has potent activity against HNSCC tumor xenografts alone and in combination with paclitaxel.
    [Abstract] [Full Text] [Related] [New Search]