These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Berberine, a natural product, induces G1-phase cell cycle arrest and caspase-3-dependent apoptosis in human prostate carcinoma cells. Author: Mantena SK, Sharma SD, Katiyar SK. Journal: Mol Cancer Ther; 2006 Feb; 5(2):296-308. PubMed ID: 16505103. Abstract: Berberine, a naturally occurring isoquinoline alkaloid, has been shown to possess anti-inflammatory and antitumor properties in some in vitro systems. Here, we report that in vitro treatment of androgen-insensitive (DU145 and PC-3) and androgen-sensitive (LNCaP) prostate cancer cells with berberine inhibited cell proliferation and induced cell death in a dose-dependent (10-100 micromol/L) and time-dependent (24-72 hours) manner. Treatment of nonneoplastic human prostate epithelial cells (PWR-1E) with berberine under identical conditions did not significantly affect their viability. The berberine-induced inhibition of proliferation of DU145, PC-3, and LNCaP cells was associated with G1-phase arrest, which in DU145 cells was associated with inhibition of expression of cyclins D1, D2, and E and cyclin-dependent kinase (Cdk) 2, Cdk4, and Cdk6 proteins, increased expression of the Cdk inhibitory proteins (Cip1/p21 and Kip1/p27), and enhanced binding of Cdk inhibitors to Cdk. Berberine also significantly (P < 0.05-0.001) enhanced apoptosis of DU145 and LNCaP cells with induction of a higher ratio of Bax/Bcl-2 proteins, disruption of mitochondrial membrane potential, and activation of caspase-9, caspase-3, and poly(ADP-ribose) polymerase. Pretreatment with the pan-caspase inhibitor z-VAD-fmk partially, but significantly, blocked the berberine-induced apoptosis, as also confirmed by the comet assay analysis of DNA fragmentation, suggesting that berberine-induced apoptosis of human prostate cancer cells is mediated primarily through the caspase-dependent pathway. The effectiveness of berberine in checking the growth of androgen-insensitive, as well as androgen-sensitive, prostate cancer cells without affecting the growth of normal prostate epithelial cells indicates that it may be a promising candidate for prostate cancer therapy.[Abstract] [Full Text] [Related] [New Search]