These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Antiatherogenic small, dense HDL--guardian angel of the arterial wall? Author: Kontush A, Chapman MJ. Journal: Nat Clin Pract Cardiovasc Med; 2006 Mar; 3(3):144-53. PubMed ID: 16505860. Abstract: Our understanding of the relationship between the atheroprotective activities of HDL and heterogeneity of HDL particles has advanced greatly. HDL particles are highly heterogeneous in structure, intravascular metabolism and antiatherogenic activity. In this review, we discuss new findings on the antiatherogenic properties of HDL particles. Small, dense HDL possesses potent antioxidative activity but this is compromised under conditions of atherogenic dyslipidemia. HDL functional deficiency frequently coincides with reductions in HDL-cholesterol concentration and alterations in HDL metabolism and structure. Formation of small, dense HDL particles with attenuated antiatherogenic activity can be mechanistically related to HDL enrichment in triglycerides and in serum amyloid A, depletion of cholesteryl esters, covalent modification of HDL apolipoproteins and attenuated antiatherogenic function of apolipoprotein AI. Low circulating levels of HDL cholesterol might, therefore, be associated with the defective functionality of small HDL particles of abnormal structure and composition. In common metabolic diseases, such as type 2 diabetes and metabolic syndrome, deficiency of HDL particle number and function favor accelerated atherosclerosis. Therapeutic normalization of the quantity, quality and biological activities of HDL particles thus represents a novel approach to attenuating atherosclerosis in dyslipidemic individuals with metabolic disease. Cholesteryl ester transfer protein inhibitors, nicotinic acid, reconstituted HDL and other HDL-raising agents are being investigated. Induction of selective increase in the circulating concentrations of small, dense HDL3 particles with increased antiatherogenic activity seems especially promising, particularly for therapy of atherogenic dyslipidemia.[Abstract] [Full Text] [Related] [New Search]