These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Increased NF-kappaB activity in fibroblasts lacking the vitamin D receptor. Author: Sun J, Kong J, Duan Y, Szeto FL, Liao A, Madara JL, Li YC. Journal: Am J Physiol Endocrinol Metab; 2006 Aug; 291(2):E315-22. PubMed ID: 16507601. Abstract: 1,25-Dihydroxyvitamin D [1,25(OH)2D3] is known to have anti-inflammatory activity; however, the molecular mechanism remains poorly defined. Here we show that the nuclear vitamin D receptor (VDR) is directly involved in the regulation of NF-kappaB activation, a pathway essential for inflammatory response. In mouse embryonic fibroblasts (MEFs) derived from VDR-/- mice, the basal level of kappaB inhibitor (IkappaB) alpha protein was markedly decreased compared with VDR+/- MEFs; however, degradation of IkappaBalpha and its phosphorylation in response to TNF-alpha treatment or Salmonella infection were not altered in VDR-/- cells, neither were the levels of IkappaB kinase-alpha and IkappaB kinase-beta proteins. Consistent with IkappaBalpha reduction, p65 accumulation in the nucleus was markedly increased in unstimulated VDR-/- cells. In addition, the physical interaction between VDR and p65 was absent in VDR-/- MEFs, which may free p65 and increase its activity. Consequently, these alterations combined led to a marked increase in nuclear p65 DNA binding and NF-kappaB transcriptional activity; consistently, induction of IL-6 by TNF-alpha or IL-1beta was much more robust in VDR-/- than in VDR+/- cells, indicating that VDR-/- cells are more susceptible to inflammatory stimulation. Therefore, cells lacking VDR appear to be more proinflammatory due to the intrinsic high NF-kappaB activity. The reduction of IkappaBalpha in VDR-/- MEFs may be partially explained by the lack of VDR-mediated stabilization of IkappaBalpha by 1,25(OH)2D3. This is supported by the observation that IkappaBalpha degradation induced by TNF-alpha was inhibited by 1,25(OH)2D3 in VDR+/- cells, but not in VDR-/- cells. Taken together, these data suggest that VDR plays an inhibitory role in the regulation of NF-kappaB activation.[Abstract] [Full Text] [Related] [New Search]