These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Release of arsenic to the environment from CCA-treated wood. 1. Leaching and speciation during service.
    Author: Khan BI, Solo-Gabriele HM, Townsend TG, Cai Y.
    Journal: Environ Sci Technol; 2006 Feb 01; 40(3):988-93. PubMed ID: 16509347.
    Abstract:
    Insufficient information exists about the speciation of arsenic leaching from in-service chromated copper arsenate (CCA)-treated products and the overall impact to soils and groundwater. To address this issue, two decks were constructed, one from CCA-treated wood and the other from untreated wood. Both decks were placed in the open environment where they were impacted by rainfall. Over a one-year period, rainwater runoff from the decks and rainwater infiltrating through 0.7 m of sand below the decks was collected and analyzed for arsenic species by HPLC-ICP-MS. The average arsenic concentration in the runoff of the untreated deck was 2-3 microg/L, whereas from the CCA-treated deck it was 600 microg/L. Both inorganic As(III) and As(V) were detected in the runoff from both decks, with inorganic As(V) predominating. No detectable levels of organoarsenic species were observed. The total arsenic concentration in the infiltrated water of the treated deck had risen from a background concentration of 3 microg/L to a concentration of 18 microg/L at the end of the study. Data from the deck study were combined with annual CCA-treated wood production statistics to develop a mass balance model to estimate the extent of arsenic leaching from in-service CCA-treated wood structures to Florida soils. Results showed that during the year 2000, of the 28 000 t of arsenic imported into the state and utilized for in-service CCA-treated wood products, approximately 4600 t had already leached. Future projections suggest that an additional 11,000 t of arsenic will leach during in-service use within the next 40 years.
    [Abstract] [Full Text] [Related] [New Search]