These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Statistical theory of collisional energy transfer in molecular collisions. trans-stilbene deactivation by argon, carbon dioxide, and n-heptane.
    Author: Nilsson D, Nordholm S.
    Journal: J Phys Chem A; 2006 Mar 09; 110(9):3289-96. PubMed ID: 16509655.
    Abstract:
    Recent advances in experimental techniques have made it possible to measure the full conditional probability density P(E, E') of the energy transfer between two colliding molecules in the gas phase, one of which is highly energized and the other in thermal equilibrium at a given temperature. Data have now become available for trans-stilbene deactivation by the three bath gas molecules Ar, CO2, and n-heptane (C7H16). The initial energies of trans-stilbene are set to 10 000, 20 000, 30 000, and 40 000 cm (-1). The results show that exceptionally large amounts of energy are transferred in each collision. By application of our partially ergodic collision theory (PECT), we find that the energy transfer efficiency betaE ranges from a rather normal value of 0.15 for n-heptane at the highest excitation energy to 0.93-nearly in the ergodic collision limit-for the argon bath gas at high excitation energy. Generally, the PECT produces a good fit of the data except for the nearly elastic peak in the case of n-heptane, where PECT produces a rounded and downshifted peak in contrast to a sharply defined elastic maximum of the monoexponential functional fit produced from the original experimental data obtained by kinetically controlled selective ionization in the work of the group of Luther in Göttingen. This problem is analyzed and found to be related partly to the lack of treatment of glancing collisions in the theory with a remaining uncertainty due to the weak dependence of energy transfer efficiency on nearly elastic collisions. A summary of the present state of understanding shows that collisional activation and deactivation of reactant molecules is more efficient and more statistical than has been previously realized.
    [Abstract] [Full Text] [Related] [New Search]