These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Teleoperation support for early human planetary missions.
    Author: Genta G, Perino MA.
    Journal: Ann N Y Acad Sci; 2005 Dec; 1065():271-84. PubMed ID: 16510414.
    Abstract:
    A renewed interest in human exploration is flourishing among all the major spacefaring nations. In fact, in the complex scene of planned future space activities, the development of a Moon base and the human exploration of Mars might have the potential to renew the enthusiasm in expanding the human presence beyond the boundaries of Earth. Various initiatives have been undertaken to define scenarios and identify the required infrastructures and related technology innovations. The typical proposed approach follows a multistep strategy, starting with a series of precursor robotic missions to acquire further knowledge of the planet and to select the best potential landing sites, and evolving toward more demanding missions for the development of a surface infrastructure necessary to sustain human presence. The technologies involved in such a demanding enterprise range from typical space technologies, like transportation and propulsion, automation and robotics, rendezvous and docking, entry/reentry, aero-braking, navigation, and deep space communications, to human-specific issues like physiology, psychology, behavioral aspects, and nutritional science for long-duration exposure, that go beyond the traditional boundaries of space activities. Among the required elements to support planetary exploration, both for the precursor robotic missions and to sustain human exploration, rovers and trucks play a key role. A robust level of autonomy will need to be secured to perform preplanned operations, particularly for the surface infrastructure development, and a teleoperated support, either from Earth or from a local base, will enhance the in situ field exploration capability.
    [Abstract] [Full Text] [Related] [New Search]