These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mechanisms of induction of cell cycle arrest and cell death by cryptolepine in human lung adenocarcinoma a549 cells. Author: Zhu H, Gooderham NJ. Journal: Toxicol Sci; 2006 May; 91(1):132-9. PubMed ID: 16510557. Abstract: We investigated p53-dependent and -independent molecular events associated with cell cycle alteration and cell death in human lung adenocarcinoma A549 cells using cryptolepine, a DNA-damaging agent. After a 24-h treatment, cryptolepine caused an accumulation of p53 at concentrations of 1.25-10 microM and induction of p21(Cip1/WAF1) but only at concentrations up to 5muM. p21(Cip1/WAF1) was also strongly induced by cryptolepine (2.5-5 microM) in cells with p53 largely ablated via small interfering RNA-mediated gene silencing. Cryptolepine induced G1-phase block at 1.25-2.5 microM, S-phase and G2/M-phase block at 2.5-5 microM, and cell death at 10 microM. The dead cells displayed condensed and fragmented nuclei, features of apoptosis. Wortmannin, an inhibitor of ataxia telangiectasia-mutated and DNA-dependent protein kinase (DNA-PK), caused cell cycle arrest at G1 phase without inducing p53 and p21(Cip1/WAF1) expression and cell death. The addition of wortmannin partially prevented cryptolepine-induced expression of p53 and p21(Cip1/WAF1) together with the S-phase block and sensitized cells to induction of cell death. NU7026, a DNA-PK-specific inhibitor, showed neither induction of cell cycle arrest and apoptosis nor the expression of p53 and p21(Cip1/WAF1). The presence of NU7026 caused further reduction of cells in G1 phase induced by cryptolepine at 5 microM without affecting the induction of p53 and p21(Cip1/WAF1) and cell death. This study using the A549 cell as a model demonstrated that cryptolepine selects different molecular pathways to cell cycle checkpoint activation in a dose-specific manner and evokes a wortmannin-sensitive antiapoptosis response.[Abstract] [Full Text] [Related] [New Search]