These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Multiple high-affinity cAMP-phosphodiesterases in human T-lymphocytes. Author: Robicsek SA, Blanchard DK, Djeu JY, Krzanowski JJ, Szentivanyi A, Polson JB. Journal: Biochem Pharmacol; 1991 Jul 25; 42(4):869-77. PubMed ID: 1651080. Abstract: Cyclic nucleotide phosphodiesterases (PDEs) are the only enzymes that inactivate intracellular cyclic AMP (cAMP). Because the functions of T-lymphocytes are modulated by cAMP levels, the isozymes of PDE in these cells are potential targets for new drugs designed to modify the body's immunity through selective alteration of T-lymphocyte PDE activity. Cyclic GMP and 3(2H)-pyridazinone-4,5- dihydro-6-[4-(1H-imidazol-1-yl)phenyl]-5-methyl-monohydrochloride (CI-930) selectively inhibit the catalytic activity of one of the two high affinity cAMP-PDE isozyme families known to occur in mammals, whereas d,l-1,4-[3-butoxy-4-methoxybenzyl]-2-imidazolidinone (Ro 20-1724) selectively inhibits the other. The objectives of this investigation were: (1) to determine whether human T-lymphocytes contain one or both of these pharmacologically distinguishable high-affinity cAMP-PDEs, and (2) to determine the effects of selective inhibitors of these PDEs on lymphocyte blastogenesis. High-affinity cAMP-PDE was found in both the soluble and particulate fractions of T-lymphocyte sonicates. Cyclic GMP and CI-930 inhibited PDE in the particulate fraction better than in the soluble fraction, but the converse was found for Ro 20-1724. CI-930 or Ro 20-1724, used alone, attenuated T-lymphocyte blastogenesis, but neither suppressed it completely. In combination, the same PDE inhibitors caused greater suppression of blastogenesis than either produced alone. The results indicate that human T-lymphocytes contain both CI-930- and Ro 20-1724-inhibitable isozymes. Either of the isozymes can modulate human T-lymphocyte blastogenesis, but inhibition of both isozymes produces synergistic antiblastogenic effects.[Abstract] [Full Text] [Related] [New Search]