These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Allogenic peripheral blood derived mesenchymal stem cells (MSCs) enhance bone regeneration in rabbit ulna critical-sized bone defect model.
    Author: Wan C, He Q, Li G.
    Journal: J Orthop Res; 2006 Apr; 24(4):610-8. PubMed ID: 16514623.
    Abstract:
    Mesenchymal stem cells (MSCs) were demonstrated to exist within peripheral blood (PB) of several mammalian species including human, guinea pig, mice, rat, and rabbit. Whether or not the PB derived MSCs (PBMSCs) could enhance the regeneration of large bone defects have not been reported. In this study, rabbit MSCs were obtained from mononuclear cells (MNCs) cultures of both the PB and bone marrow (BM) origin. The number of PBMSCs was relatively lower, with the colony forming efficiency (CFE) ranging from 1.2 to 13 per million MNCs. Under specific inductive conditions, PBMSCs differentiated into osteoblasts, chondrocytes, and adipocytes, showing multidifferentiation ability similar to BMMSCs. Bilateral 20 mm critical-sized bone defects were created in the ulnae of 12 6-month-old New Zealand white rabbits. The defects were treated with allogenic PBMSCs/Skelite (porous calcium phosphate resorbable substitute), BMMSCs/Skelite, PBMNCs/Skelite, Skelite alone, and left empty for 12 weeks. Bone regeneration was evaluated by serial radiography, peripheral quantitative computed tomography (pQCT), and histological examinations. The X-ray scores and the pQCT total bone mineral density in the PBMSCs/Skelite and BMMSCs/Skelite treated groups were significantly greater than those of the PBMNCs/Skelite and Skelite alone groups ( p < 0.05), respectively. Histologically, newly formed bone was evident in the PBMSCs/Skelite and BMMSCs/Skelite treated groups. The findings demonstrated that the rabbit PBMSCs possessed multidifferentiation potential comparable with BMMSCs, allogenic PBMSCs seeded onto porous calcium phosphate resorbable substitutes enhanced bone regeneration in the rabbit ulna critical-sized bone defect model, suggesting allogenic PBMSCs may be a new source of circulating osteogenic stem cells for bone regeneration and tissue engineering.
    [Abstract] [Full Text] [Related] [New Search]