These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The beneficial in vitro effects of lovastatin and chelerythrine on relaxatory response to acetylcholine in the perfused mesentric bed isolated from diabetic rats.
    Author: Fatehi-Hassanabad Z, Imen-Shahidi M, Fatehi M, Farrokhfall K, Parsaeei H.
    Journal: Eur J Pharmacol; 2006 Mar 27; 535(1-3):228-33. PubMed ID: 16516190.
    Abstract:
    Diabetes mellitus is associated with an increased risk of cardiovascular disease. Endothelial dysfunction (i.e. decreased endothelium-dependent vasorelaxation) plays a key role in the pathogenesis of diabetic vascular disease. The present study was undertaken to determine whether diabetes induced by streptozotocin alters mesenteric responses to vasodilators and, if so, to study the acute in vitro effects of lovastatin and chelerythrine. Endothelial function was assessed in constantly perfused preparation removed from rats, 12 weeks after treatment with either saline or streptozotocin (45 mg/kg, intraperitoneally). In pre-contracted mesenteric beds (with 100 microM phenylephrine) removed from diabetic rats, the concentration response curve to acetylcholine, but not to sodium nitroprusside, was significantly reduced. Perfusion with lovastatin (10 microM for 20 min) or chelerythrine (1 microM for 20 min) significantly improved the acetylcholine-mediated relaxation in preparations removed from diabetic but not control rats. Pre-incubation of tissue with N(G)-nitro-L-argenine methyl ester hydrochloride (10 microM for 20 min) inhibited the beneficial effect of lovastatin but not chelerythrine. Pre-treatment of tissue with indomethacin (10 microM for 20 min) did not modify the effects of lovastatin or chelerythrine on acetylcholine responses. The present results demonstrate that endothelial dysfunction induced by diabetes (in a resistant vasculature, such as rat mesenteric bed) may be improved by an acute exposure to either lovastatin or chelerythrine. Furthermore, our results suggest that the beneficial effect of lovastatin is mediated via the nitric oxide pathway.
    [Abstract] [Full Text] [Related] [New Search]