These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: GM1 ganglioside prevents seizures, Na+,K+-ATPase activity inhibition and oxidative stress induced by glutaric acid and pentylenetetrazole.
    Author: Fighera MR, Royes LF, Furian AF, Oliveira MS, Fiorenza NG, Frussa-Filho R, Petry JC, Coelho RC, Mello CF.
    Journal: Neurobiol Dis; 2006 Jun; 22(3):611-23. PubMed ID: 16516483.
    Abstract:
    Monosialoganglioside (GM1) is a glycosphingolipid that protects against some neurological conditions, such as seizures and ischemia. Glutaric acidemia type I (GA-I) is an inherited disease characterized by striatal degeneration, seizures, and accumulation of glutaric acid (GA). In this study, we show that GA inhibits Na+,K+-ATPase activity and increases oxidative damage markers (total protein carbonylation and thiobarbituric acid-reactive substances-TBARS) production in striatal homogenates from rats in vitro and ex vivo. It is also shown that GM1 (50 mg/kg, i.p., twice) protects against GA-induced (4 micromol/striatum) seizures, protein carbonylation, TBARS increase, and inhibition of Na+,K+-ATPase activity ex vivo. Convulsive episodes induced by GA strongly correlated with Na+,K+-ATPase activity inhibition in the injected striatum but not with oxidative stress marker measures. Muscimol (46 pmol/striatum), but not MK-801 (3 nmol/striatum) and DNQX (8 nmol/striatum) prevented GA-induced convulsions, increase of TBARS and protein carbonylation and inhibition of Na+,K+-ATPase activity. The protection of GM1 and muscimol against GA-induced seizures strongly correlated with Na+,K+-ATPase activity maintenance ex vivo. In addition, GM1 (50-200 microM) protected against Na+,K+-ATPase inhibition induced by GA (6 mM) but not against oxidative damage in vitro. GM1 also decreased pentylenetetrazole (PTZ)-induced (1.8 micromol/striatum) seizures, Na+,K+-ATPase inhibition, and increase of TBARS and protein carbonyl in the striatum. These data suggest that Na+,K+-ATPase and GABA(A) receptor-mediated mechanisms may play important roles in GA-induced seizures and in their prevention by GM1.
    [Abstract] [Full Text] [Related] [New Search]