These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mechanism of insulin-induced activation of Na(+)-K(+)-ATPase in isolated rat soleus muscle.
    Author: Weil E, Sasson S, Gutman Y.
    Journal: Am J Physiol; 1991 Aug; 261(2 Pt 1):C224-30. PubMed ID: 1651650.
    Abstract:
    Insulin augments Na(+)-K(+)-ATPase activity in skeletal muscles. It has been proposed that the sequence of events is activation of Na(+)-H+ antiporter, increased intracellular Na+ concentration ( [Na+]i), and stimulation of Na(+)-K+ pump. We have used isolated rat soleus muscles to test this hypothesis. Insulin increased the ouabain-suppressible K+ uptake in a dose- and time-dependent manner. The maximal effect was observed at 50-100 mU/ml insulin. Stimulation of K+ uptake was accompanied by increased specific [3H]ouabain binding and lowered [Na+]i. The ionophore monensin, which promotes Na(+)-H+ exchange, also increased the rate of ouabain-suppressible K+ uptake in soleus muscle, with a maximal effect obtained at 10-100 microM ionophore. However, this increase was accompanied by an elevation of [Na+]i. In the presence of 10-100 microM monensin, addition of 100 mU/ml insulin further increased K+ uptake but reduced [Na+]i. The effect on K+ uptake was additive. Ouabain (10(-3) M) completely suppressed the effect of insulin on [Na+]i. Insulin had no effect on the magnitude or the time course of insulin stimulation of K+ uptake. Thus equal stimulation of Na(+)-K(+)-ATPase by insulin was observed when [Na+]i was elevated (under monensin) or lowered (under amiloride). These data suggest that activation of Na(+)-K(+)-ATPase in soleus muscle by insulin is not secondary to stimulation of Na(+)-H+ antiporter.
    [Abstract] [Full Text] [Related] [New Search]