These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Commissioning and quality assurance of a commercial stereotactic treatment-planning system for extracranial IMRT.
    Author: Wang L, Li J, Paskalev K, Hoban P, Luo W, Chen L, McNeeley S, Price R, Ma C.
    Journal: J Appl Clin Med Phys; 2006; 7(1):21-34. PubMed ID: 16518314.
    Abstract:
    A 3D treatment-planning system (TPS) for stereotactic intensity-modulated radiotherapy (IMRT) using a micro-multileaf collimator has been made available by Radionics. In this work, we report our comprehensive quality assurance (QA) procedure for commissioning this TPS. First, the accuracy of stereotaxy established with a body frame was checked to ensure accurate determination of a target position within the planning system. Second, the CT-to-electron density conversion curve used in the TPS was fitted to our site-specific measurement data to ensure the accuracy of dose calculation and measurement verification in a QA phantom. Using the QA phantom, the radiological path lengths were verified against known geometrical depths to ensure the accuracy of the ray-tracing algorithm. We also checked inter- and intraleaf leakage/transmission for adequate jaw settings. Measurements for dose verification were performed in various head/neck and prostate IMRT treatment plans using the patient-specific optimized fluence maps. Both ion chamber and film were used for point dose and isodose distribution verifications. To ensure that adjacent organs at risk receive dose within the expectation, we used the Monte Carlo method to calculate dose distributions and dose-volume histograms (DVHs) for these organs at risk. The dosimetric accuracy satisfied the published acceptability criteria. The Monte Carlo calculations confirmed the measured dose distributions for target volumes. For organs located on the beam boundary or outside the beam, some differences in the DVHs were noticed. However, the plans calculated by both methods met our clinical criteria. We conclude that the accuracy of the XKnifetrade mark RT2 treatment-planning system is adequate for the clinical implementation of stereotactic IMRT.
    [Abstract] [Full Text] [Related] [New Search]