These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: TNP-8N3-ADP photoaffinity labeling of two Na,K-ATPase sequences under separate Na+ plus K+ control.
    Author: Ward DG, Taylor M, Lilley KS, Cavieres JD.
    Journal: Biochemistry; 2006 Mar 14; 45(10):3460-71. PubMed ID: 16519541.
    Abstract:
    ATP has high- and low-affinity effects on the sodium pump and other P-type ATPases. We have approached this question by using 2',3'-O-(trinitrophenyl)-8-azidoadenosine 5'-diphosphate (TNP-8N(3)-ADP) to photoinactivate and label Na,K-ATPase, both in its native state and after covalent FITC block of its high-affinity ATP site. With the native enzyme, the photoinactivation rate constant increases hyperbolically with a K(D(TNP-8N)3(-)(ADP)) of 0.11 microM; TNP-ATP and ATP protect the site with high affinities. The inactivation does not require Na(+), but K(+) inhibits with a K(K)' of 12 microM; Na(+) reverses this effect, with a K(Na) of 0.17 mM. This pattern suggests that Na(+) and K(+) are binding at sites in their "intracellular" conformation. It was known that FITC did not abolish the reverse phosphorylation by P(i), or the K(+)-phosphatase activity, and that TNP-8N(3)-ADP could subsequently photoinactivate the latter with >100-fold lower affinity; in that case, the cation sites acted as if facing outward [Ward, D. G., and Cavieres, J. D. (1998) J. Biol. Chem. 273, 14277-14284, 33759-33765]. Native and FITC-modified enzymes have now been photolabeled with TNP-8N(3)-[alpha-(32)P]ADP and alpha-chain soluble tryptic peptides separated by reverse-phase HPLC. With native Na,K-ATPase, three labeled peaks lead to the unique sequence alpha-(470)Ile-Val-Glu-Ile-Pro-Phe-Asn-Ser-Thr-Asn-X-Tyr-Gln-Leu-Ser-Ile-His-Lys(487), the dropped residue being alphaLys480. With the FITC enzyme, instead, two independent labeling and purification cycles return the sequence alpha-(721)Ala-Asp-Ile-Gly-Val-Ala-Met-Gly-Ile-Ala-Gly-Ser-Asp-Val-Ser-Lys(736). These results suggest that Na,K-ATPase also has a low-affinity nucleotide binding region, one that is under distinctive allosteric control by Na(+) and K(+). Moreover, the cation effects seem compatible with a slow, passive Na(+)/K(+) carrier behavior of the FITC-modified sodium pump.
    [Abstract] [Full Text] [Related] [New Search]