These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The nature and origin of spontaneous noise in G protein-gated ion channels.
    Author: Okabe K, Yatani A, Brown AM.
    Journal: J Gen Physiol; 1991 Jun; 97(6):1279-93. PubMed ID: 1651979.
    Abstract:
    Arrival of agonist is generally thought to initiate the signal transduction process in G protein-receptor coupled systems. However, the muscarinic atrial K+ (K+[ACh]) channel opens spontaneously in the absence of applied agonist, giving a noisy appearance to the current records. We investigated the nature and origin of the noise by measuring single channel currents in cell-attached or excised, inside-out membrane patches. Guanosine triphosphate (GTP) produced identical single channel currents in a concentration- and Mg(2+)-dependent manner in the presence or absence of carbachol, but the requirements for GTP were greater in the absence of agonist. Hence the agonist-independent currents appeared to be produced by an endogenous G protein, Gk. This prediction was confirmed when an affinity-purified, sequence-specific Gi-3 alpha antibody or pertussis toxin (PTX) blocked the agonist-independent currents. Candidate endogenous agonists were ruled out by the lack of effect of their corresponding antagonists. Thus agonist-independent currents had the same nature as agonist-dependent K+[ACh] currents and seemed to originate in the same way. We have developed a hypothesis in which agonist-free, empty receptors prime Gk with GTP and Gk activates atrial K+ [ACh] channels producing basal currents or noise. Agonist-independent activation by G proteins of effectors including ion channels appears to be a common occurrence.
    [Abstract] [Full Text] [Related] [New Search]