These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Intracellular adaptations of glutathione content in Cucurbita pepo L. induced by treatment with reduced glutathione and buthionine sulfoximine. Author: Zechmann B, Müller M, Zellnig G. Journal: Protoplasma; 2006 May; 227(2-4):197-209. PubMed ID: 16520878. Abstract: The intracellular effects of GSH (reduced glutathione) and BSO (buthionine sulfoximine) treatment on glutathione content were investigated with immunogold labeling in individual cellular compartments of Cucurbita pepo L. seedlings. Generally, GSH treatment led to increased levels of glutathione in roots and leaves (up to 3.5-fold in nuclei), whereas BSO treatment significantly decreased glutathione content in all organs. Transmission electron microscopy revealed that glutathione levels in mitochondria, which showed the highest glutathione labeling density of all compartments, remained generally unaffected by both treatments. Since glutathione within mitochondria is involved in the regulation of cell death, these results indicate that high and stable levels of glutathione in mitochondria play an important role in cell survival strategies. BSO treatment significantly decreased glutathione levels (1) in roots by about 78% in plastids and 60.8% in the cytosol and (2) in cotyledons by about 55% in the cytosol and 38.6% in plastids. After a short recovery period, glutathione levels were significantly increased in plastids and the cytosol of root tip cells (up to 3.7-fold) and back to control values in cotyledons. These results indicate that plastids, either alone or together with the cytosol, are the main center of glutathione synthesis in leaves as well as in roots. After GSH treatment for 24 h, severe ultrastructural damage related to increased levels of glutathione was found in roots, in all organelles except mitochondria. Possible negative effects of GSH treatment leading to the observed ultrastructural damage are discussed.[Abstract] [Full Text] [Related] [New Search]