These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration.
    Author: Portmann-Lanz CB, Schoeberlein A, Huber A, Sager R, Malek A, Holzgreve W, Surbek DV.
    Journal: Am J Obstet Gynecol; 2006 Mar; 194(3):664-73. PubMed ID: 16522395.
    Abstract:
    OBJECTIVE: Mesenchymal stem cells (MSCs) have a broad differentiation potential. We aimed to determine if MSCs are present in fetal membranes and placental tissue and to assess their potential to differentiate into neurogenic and mesodermal lineages. STUDY DESIGN: MSCs isolated from first and third trimester chorion and amnion and first trimester chorionic villi and characterized morphologically and by flourescence-activated cell sorting analysis. Their ability to mature under different culture conditions into various cells of mesodermal and neuroectodermal cell lines was assessed by immuno- and cytochemical staining. RESULTS: Independent of gestational age, cells isolated from fetal membranes and placenta showed typical MSC phenotype (positive for CD166, CD105, CD90, CD73, CD49e, CD44, CD29, CD13, MHC I; negative for CD14, CD34, CD45, MHC II) and were able to differentiate into mesodermal cells expressing cell markers/cytologic staining consistent with mature chondroblasts, osteoblasts, adipocytes, or myocytes and into neuronal cells presenting markers of various stages of maturation. The differentiation pattern was mainly dependent on cell type. CONCLUSION: Mesenchymal cells from chorion, amnion, and villous stroma can be differentiated into neurogenic, chondrogenic, osteogenic, adipogenic, and myogenic lineage. Placental tissue obtained during prenatal chorionic villous sampling or at delivery might be an ideal source for autologous stem cell graft for peripartum neuroregeneration and other clinical issues.
    [Abstract] [Full Text] [Related] [New Search]