These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Endothelin modulates calcium channel current in neurones of rabbit pelvic parasympathetic ganglia.
    Author: Nishimura T, Akasu T, Krier J.
    Journal: Br J Pharmacol; 1991 May; 103(1):1242-50. PubMed ID: 1652345.
    Abstract:
    1. The effects of endothelin were studied, in vitro, on neurones contained in the rabbit vesical pelvic ganglion by use of intracellular and single-electrode voltage clamp techniques under conditions where sodium and potassium channels were blocked. 2. In the current-clamp experiments, endothelin (1 microM) caused a depolarization followed by a hyperpolarization of the membrane potential. In the voltage-clamp experiments, endothelin (0.01-1 microM) caused an inward current followed by an outward current in a concentration-dependent manner. 3. Membrane conductance was increased during the endothelin-induced depolarization and inward current. Membrane conductance was decreased during the endothelin-induced hyperpolarization and outward current. 4. The endothelin-induced inward and outward currents were not altered by lowering external sodium concentration or raising external potassium concentration. 5. The endothelin-induced inward current was depressed (mean 72%) in a Krebs solution containing nominally zero calcium and high magnesium. These results suggest that a predominent component of the endothelin-induced inward current is mediated by calcium ions. 6. The calcium-insensitive component of the inward current was abolished by a chloride channel blocker, 4-acetamide-4'-isothiocyanostilbene-2,2'-disulphonic acid. The mean reversal potential for the calcium-insensitive component of the inward current was -18 mV. This value is near the equilibrium potential for chloride. Thus, it is presumed that the calcium-insensitive component of the inward current is carried by chloride ions. 7. Endothelin caused an initial depression followed by a long lasting facilitation of both rapidly and slowly decaying components of high-threshold calcium channel currents (N- and L-type). 8. In summary, the data show that for neurones in the vesical pelvic ganglia, endothelin causes membrane depolarization and activates an inward current. The ionic mechanisms involve receptor-operated calcium and chloride currents. Also, endothelin causes an initial depression followed by a long-lasting facilitation of the voltage-dependent calcium current.
    [Abstract] [Full Text] [Related] [New Search]