These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dynamic electrophoresis of a spherical dispersion of soft particles subject to a stress-jump condition.
    Author: Min WL, Lee E, Hsu JP.
    Journal: J Colloid Interface Sci; 2006 Jul 01; 299(1):464-71. PubMed ID: 16524586.
    Abstract:
    The dynamic mobility of a spherical dispersion of soft particles, where a particle comprises a rigid core and a membrane layer, is evaluated for the case when the shear stress across the membrane layer-liquid interface is discontinuous, the so-called stress-jump condition. We show that, due to the effect of double-layer deformation, the magnitude of the dynamic mobility of a particle has a local maximum and the corresponding phase angle has a negative (phase lead) local minimum at a low to medium level of the frequency of the applied electric field. This effect becomes insignificant if the frequency of the applied electric field is sufficiently high. The stress-jump condition may lead to a significant influence on the drag, and consequently the mobility of a particle. The degree of influence depends upon the sign of the stress-jump coefficient and the charged conditions of the membrane layer of the particle.
    [Abstract] [Full Text] [Related] [New Search]