These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecular modeling of interactions between L-lysine and functionalized quartz surfaces.
    Author: Gambino GL, Grassi A, Marletta G.
    Journal: J Phys Chem B; 2006 Mar 16; 110(10):4836-45. PubMed ID: 16526721.
    Abstract:
    Molecular modeling techniques have been used to investigate the interaction of L-lysine in aqueous medium with silanol and methyl sites onto quartz substrates. The substrate effect has been studied for partially hydrophilic surfaces formed by silanol and methyl groups with a ratio of 1:5 and hydrophobic fully methylated surfaces. Molecular dynamics and static calculations indicate that L-lysine does not show any significant interaction with fully methylated surfaces, while its interaction with hydroxylated/methylated surfaces is dominated by electrostatic and H-bond terms. Accordingly, on fully methylated surfaces there is no preferential orientation of L-lysine with respect to the surface, while for hydroxylated/methylated surfaces the L-lysine-surface interaction mainly depends on the molecular orientation, with a preferred geometry involving the ammonium group pointing toward the silanol site. The structure of water shells around L-lysine molecules was shown to be strongly affected by the relative hydrophilic/hydrophobic character of the surfaces. In particular, the order is almost completely lost for partially hydrophilic surfaces, while well-defined hydration shells around L-lysine are obtained for hydrophobic surfaces.
    [Abstract] [Full Text] [Related] [New Search]