These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Amiodarone inhibits thyroidal iodide transport in vitro by a cyclic adenosine 5'-monophosphate- and iodine-independent mechanism.
    Author: Tedelind S, Larsson F, Johanson C, van Beeren HC, Wiersinga WM, Nyström E, Nilsson M.
    Journal: Endocrinology; 2006 Jun; 147(6):2936-43. PubMed ID: 16527845.
    Abstract:
    Thyroid side effects are common in patients treated for cardiac arrhythmias with amiodarone (AM). A major disturbance is inhibited thyroidal radioiodine uptake in AM-induced thyrotoxicosis, which makes 131I therapy ineffective. On the other hand, failure to escape from the Wolff-Chaikoff effect by down-regulation of the sodium/iodide symporter (NIS) is proposed to explain AM-induced hypothyroidism. However, previously no experimental studies on the possible mechanisms have been conducted. We therefore investigated the early effects of AM on thyroidal iodide transport using bicameral chamber cultures of primary pig thyrocytes that reproduce the three tissue compartments (epithelium, lumen, and extrafollicular space) of the gland. AM dose-dependently (1-50 microm) inhibited the TSH-stimulated transepithelial (basal to apical) transport of 125I- by up to 90%. The inhibitory effect was noticed already after 8 h and was further pronounced after 1-4 d, depending on the AM concentration. The intracellularly accumulated 125I- was reduced by perchlorate but not AM, and quantitative real-time RT-PCR revealed no change in the NIS expression in AM-treated cells. Blocking of cAMP degradation with 3-isobutyl-1-methylxanthine or withdrawal of AM reversed AM-induced changes in electrolyte transport but were unable to recover the suppressed 125I- transport. The iodine-free AM analog dronedarone also inhibited 125I- transport to the same extent as AM. The findings indicate that AM blocks thyroidal iodide uptake by reducing the iodide permeability of the apical plasma membrane of the thyroid epithelial cells. The effect is iodine independent and long-lasting and does not involve impaired function of NIS or the TSH receptor/cAMP signaling pathway.
    [Abstract] [Full Text] [Related] [New Search]