These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification of a missense mutation in one allele of a patient with Pompe disease, and use of endonuclease digestion of PCR-amplified RNA to demonstrate lack of mRNA expression from the second allele. Author: Zhong N, Martiniuk F, Tzall S, Hirschhorn R. Journal: Am J Hum Genet; 1991 Sep; 49(3):635-45. PubMed ID: 1652892. Abstract: Infantile-onset glycogen storage disease type II, or Pompe disease, results from a genetic deficiency of the lysosomal enzyme acid alpha glucosidase (GAA). Sequencing of the cDNA from a cell line (GM 244) derived from a patient with Pompe disease demonstrated a T953-to-C transition that predicted a methionine-to-threonine substitution at codon 318. The basepair substitution resulted in loss of restriction-endonuclease sites for NcoI and StyI. Analysis of genomic DNA revealed both a normal and an abnormal NcoI fragment, indicating that the patient was a genetic compound. NcoI and StyI digestion of cDNA, amplified by PCR from reverse-transcribed RNA, demonstrated that greater than 95% of the GAA mRNA in GM 244 was derived from the allele carrying the missense mutation. The missense mutation was uncommon, since it was not detected in 37 additional GAA-deficient chromosomes, as determined by digestion of genomic DNA with NcoI and hybridization. The amino acid substitution predicts a new potential site for N-linked glycosylation, as well as major changes in secondary structure of the protein. We could confirm that the mutation was responsible for the enzyme deficiency by demonstrating that a hybrid minigene containing the mutation did not express GAA enzyme activity after transient gene expression. We have therefore now provided the first identification of a single-basepair missense mutation in a patient with Pompe disease and furthermore have demonstrated that the patient is a genetic compound with the second allele barely expressing mRNA.[Abstract] [Full Text] [Related] [New Search]