These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Combining gene expression profiles and protein-protein interaction data to infer gene functions. Author: Tu K, Yu H, Li YX. Journal: J Biotechnol; 2006 Jul 25; 124(3):475-85. PubMed ID: 16530869. Abstract: The ever-increasing flow of gene expression profiles and protein-protein interactions has catalyzed many computational approaches for inference of gene functions. Despite all the efforts, there is still room for improvement, for the information enriched in each biological data source has not been exploited to its fullness. A composite method is proposed for classifying unannotated genes based on expression data and protein-protein interaction (PPI) data, which extracts information from both data sources in novel ways. With the noise nature of expression data taken into consideration, importance is attached to the consensus expression patterns of gene classes instead of the actual expression profiles of individual genes, thus characterizing the composite method with enhanced robustness against microarray data variation. With regard to the PPI network, the traditional clear-cut binary attitude towards inter- and intra-functional interactions is abandoned, whereas a more objective perspective into the PPI network structure is formed through incorporating the varied function-function interaction probabilities into the algorithm. The composite method was implemented in two numerical experiments, where its improvement over single-data-source based methods was observed and the superiority of the novel data handling operations was discussed.[Abstract] [Full Text] [Related] [New Search]