These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Concanavalin A amplifies both beta-adrenergic and muscarinic cholinergic receptor-adenylate cyclase-linked pathways in cardiac myocytes. Author: Rocha-Singh KJ, Hines DK, Honbo NY, Karliner JS. Journal: J Clin Invest; 1991 Sep; 88(3):760-6. PubMed ID: 1653274. Abstract: Concanavalin A (Con A) is a tetrameric plant lectin that disrupts plasma membrane-cytoskeletal interactions and alters plasma membrane fluidity. We used Con A as a probe to explore beta-adrenergic and muscarinic cholinergic receptor-mediated regulation of cAMP in intact neonatal rat ventricular myocytes. Preincubation with Con A, 0.5 micrograms/ml, attenuated 1 microM (-)-norepinephrine (NE)-induced downregulation of beta-adrenergic receptors and resulted in a 50% augmentation of cAMP accumulation stimulated by 1 microM NE. Con A also augmented forskolin (1-10 microM)-stimulated cAMP accumulation by an average of 37% (P less than 0.05); however, Con A preincubation had no effect on basal or cholera toxin-stimulated cAMP content. The muscarinic cholinergic agonist carbachol (1-100 microM) decreased 1 microM NE-stimulated cAMP generation by an average of 32% (n = 7, P less than 0.05); preincubation with Con A further enhanced the inhibitory effect of carbachol by 18% (n = 7, P less than 0.05). Carbachol (1 microM) for 2 h decreased muscarinic cholinergic receptor density in whole cells by 33%; preincubation with Con A prevented this receptor downregulation. Con A pretreatment did not affect (-)-isoproterenol- or forskolin-stimulated adenylate cyclase activity in cell homogenates, suggesting that an intact cytoarchitecture is necessary for Con A to augment cAMP formation. We conclude that Con A, through its modulation of beta-adrenergic and muscarinic cholinergic receptor signaling, amplifies both stimulatory and inhibitory adenylate cyclase-linked pathways in intact neonatal ventricular myocytes. These data suggest the possibility that plasma membrane-cytoskeletal interaction is an important regulator of transmembrane signaling because interference with this interaction results in alterations in cAMP accumulation mediated by both beta-adrenergic- and muscarinic cholinergic-adenylate cyclase pathways.[Abstract] [Full Text] [Related] [New Search]