These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Prooxidant and antioxidant activity of vitamin E analogues and troglitazone. Author: Tafazoli S, Wright JS, O'Brien PJ. Journal: Chem Res Toxicol; 2005 Oct; 18(10):1567-74. PubMed ID: 16533021. Abstract: The order of antioxidant effectiveness of low concentrations of vitamin E analogues, in preventing cumene hydroperoxide-induced hepatocyte lipid peroxidation and cytotoxicity, was 2,2,5,7,8-pentamethyl-6-hydroxychromane (PMC) > troglitazone > Trolox C > alpha-tocopherol > gamma-tocopherol > delta-tocopherol. However, vitamin E analogues, including troglitazone at higher concentrations, induced microsomal lipid peroxidation when oxidized to phenoxyl radicals by peroxidase/H2O2. Ascorbate or GSH was also cooxidized, and GSH cooxidation by vitamin E analogue phenoxyl radicals was also accompanied by extensive oxygen uptake and oxygen activation. When oxidized by nontoxic concentrations of peroxidase/H2O2, vitamin E analogues except PMC also caused hepatocyte cytotoxicity, lipid peroxidation, and GSH oxidation. The prooxidant order of vitamin E analogues in catalyzing hepatocyte cytotoxicity, lipid peroxidation, and GSH oxidation was troglitazone > Trolox C > delta-tocopherol > gamma-tocopherol > alpha-tocopherol > PMC. A similar order of effectiveness was found for GSH cooxidation or microsomal lipid peroxidation but not for ascorbate cooxidation. Except for troglitazone, the toxic prooxidant activity of vitamin E analogues was therefore inversely proportional to their antioxidant activity. The high troglitazone prooxidant activity could be a contributing factor to its hepatotoxicity. We have also derived equations for three-parameter quantitative structure-activity relationships (QSARs), which described the correlation between antioxidant and prooxidant activity of vitamin E ananlogues and their lipophilicity (log P), ionization potential (E(HOMO)), and dipole moment.[Abstract] [Full Text] [Related] [New Search]