These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Metal ion dependence, thermodynamics, and kinetics for intramolecular docking of a GAAA tetraloop and receptor connected by a flexible linker.
    Author: Downey CD, Fiore JL, Stoddard CD, Hodak JH, Nesbitt DJ, Pardi A.
    Journal: Biochemistry; 2006 Mar 21; 45(11):3664-73. PubMed ID: 16533049.
    Abstract:
    The GAAA tetraloop-receptor motif is a commonly occurring tertiary interaction in RNA. This motif usually occurs in combination with other tertiary interactions in complex RNA structures. Thus, it is difficult to measure directly the contribution that a single GAAA tetraloop-receptor interaction makes to the folding properties of a RNA. To investigate the kinetics and thermodynamics for the isolated interaction, a GAAA tetraloop domain and receptor domain were connected by a single-stranded A(7) linker. Fluorescence resonance energy transfer (FRET) experiments were used to probe intramolecular docking of the GAAA tetraloop and receptor. Docking was induced using a variety of metal ions, where the charge of the ion was the most important factor in determining the concentration of the ion required to promote docking {[Co(NH(3))(6)(3+)] << [Ca(2+)], [Mg(2+)], [Mn(2+)] << [Na(+)], [K(+)]}. Analysis of metal ion cooperativity yielded Hill coefficients of approximately 2 for Na(+)- or K(+)-dependent docking versus approximately 1 for the divalent ions and Co(NH(3))(6)(3+). Ensemble stopped-flow FRET kinetic measurements yielded an apparent activation energy of 12.7 kcal/mol for GAAA tetraloop-receptor docking. RNA constructs with U(7) and A(14) single-stranded linkers were investigated by single-molecule and ensemble FRET techniques to determine how linker length and composition affect docking. These studies showed that the single-stranded region functions primarily as a flexible tether. Inhibition of docking by oligonucleotides complementary to the linker was also investigated. The influence of flexible versus rigid linkers on GAAA tetraloop-receptor docking is discussed.
    [Abstract] [Full Text] [Related] [New Search]