These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Differential effects of triethyllead on synaptosomal [3H]dopamine vs. [3H]acetylcholine and [3H]gamma-aminobutyric acid release. Author: Minnema DJ, Cooper GP, Schamer MM. Journal: Neurotoxicol Teratol; 1991; 13(3):257-65. PubMed ID: 1653396. Abstract: In vitro exposure to tetraethyllead (Et4Pb, 10 microM) did not alter the release of [3H] dopamine (DA), [3H]acetylcholine (ACh), or [3H]gamma-aminobutyric acid (GABA) from superfused synaptosomes isolated from rat brain striatum, hippocampus, and cortex, respectively. On the other hand, a concentration-dependent increase in the spontaneous release of these transmitters was observed following exposure to triethyllead (Et3Pb, 0.1-10 microM). The magnitude of 1 microM Et3Pb-induced [3H]DA release was 5-fold greater than that observed for [3H]ACh or [3H]GABA release. Removal of [Ca2+]e did not alter the Et3Pb-induced increase in the release of these three transmitter substances, nor did Et3Pb alter synaptosomal 45Ca efflux. EtePb-induced [3H]ACh and [3H]GABA release, but not [3H]DA release, was blocked by lowering [Na+]e from 140 to 50 mM. Similarly, the release of [3H]ACh and [3H]GABA, but not [3H]DA, induced by either Na,K-ATPase inhibition or veratridine (a Na(+)-ionophore), was attenuated by lowering [Na+]e from 140 to 50 mM. However, Et3Pb did not inhibit isolated synaptic membrane Na,K-ATPase, nor did the magnitude or temporal patterns of Et3Pb-induced transmitter release resemble transmitter release induced by Na,K-ATPase inhibition. Et3Pb and veratridine, but not Na,K-ATPase inhibition, produced an increase in synaptosomal [3H] deoxyglucose phosphate (dGluP) efflux, suggesting that both compounds increase membrane permeability. A Et3Pb-induced increase in membrane permeability is further supported by electrophysiological studies using the frog neuromuscular junction in which Et3Pb was found to reduce both the input resistance and membrane potential of muscle cells. As with [3H]ACh and [3H]GABA release, the Et3Pb-induced increase in synaptosomal [3H]dGluP efflux was attenuated by lowering [Na+]e.(ABSTRACT TRUNCATED AT 250 WORDS)[Abstract] [Full Text] [Related] [New Search]