These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: NG2 proteoglycan-expressing microglia as multipotent neural progenitors in normal and pathologic brains. Author: Yokoyama A, Sakamoto A, Kameda K, Imai Y, Tanaka J. Journal: Glia; 2006 May; 53(7):754-68. PubMed ID: 16534776. Abstract: Rat primary microglia (MG) acquired a multipotent property to give rise to neuroectodermal cells through two-step culture in 10 and 70% serum-supplemented media for 5 days. Such multipotent MG, called promicroglioblasts (ProMGBs), formed cell aggregates, which generated cells with neuroectodermal phenotypes shortly after their transfer into serum-free medium. As revealed by immunohistochemistry, there were a few MG expressing NG2 chondroitin sulfate proteoglycan (NG2) in the neonatal rat brain. Primary culture from the neonatal brain contained NG2+ MG, which appeared to be the source of NG2+ ProMGB aggregates. The aggregates were MG marker+/NG2+/GFAP+/NCAM+/S-100beta- and had alkaline phosphatase activity. The marked accumulation of NG2+ MG was observed close to stab wounds made in the mature rat brain. The accumulated NG2+ MG in the wound gradually decreased in number, but the cells persisted up to 150 days postlesioning. In addition, GFAP immunoreactivity increased markedly around the wound. The NG2+ MG in the wounds separated with trypsin-EDTA formed NG2+ aggregates in 70% serum-supplemented medium and then transformed into cells with neuroectodermal phenotypes in serum-free medium. Although it is difficult to separate viable neurons from mature brains, cells from stab wounds generated process-bearing beta-tubulin III+ cells in vitro easily. These data suggest that NG2+ MG in normal developing or pathologic brains are involved in the genesis or regeneration of the brain.[Abstract] [Full Text] [Related] [New Search]