These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A novel ternary ligand system useful for preparation of cationic (99m)Tc-diazenido complexes and (99m)Tc-labeling of small biomolecules. Author: Kim YS, He Z, Hsieh WY, Liu S. Journal: Bioconjug Chem; 2006; 17(2):473-84. PubMed ID: 16536480. Abstract: This report describes a novel ternary ligand system composed of a phenylhydrazine, a crown ether-containing dithiocarbamate (DTC), and a PNP-type bisphosphine (PNP). The combination of three different ligands with (99m)Tc results in cationic (99m)Tc-diazenido complexes, [(99m)Tc(NNAr)(DTC)(PNP)]+, with potential radiopharmaceuticals for heart imaging. Synthesis of cationic (99m)Tc-diazenido complexes can be accomplished in two steps. For example, the reaction of phenylhydrazine with (99m)TcO4- at 100 degrees C in the presence of excess stannous chloride and 1,2-diaminopropane-N,N,N',N'-tetraacetic acid (PDTA) results in the [(99m)Tc(NNPh)(PDTA)n] intermediate, which then reacts with sodium N-(dithiocarbamato)-2-aminomethyl-15-Crown-5 (L4) and N,N-bis[2-(bis(3-ethoxypropyl)phosphino)ethyl]ethoxyethylamine (PNP6) at 100 degrees C for 15 min to give the complex, [(99m)Tc(NNPh)(L4)(PNP6)]+ in high yield (>90%). Cationic complexes [(99m)Tc(NNPh)(DTC)(PNP)]+ are stable for > or = 6 h. Their composition was determined to be 1:1:1:1 for Tc:NNPh:DTC:PNP using the mixed-ligand experiments on the tracer ((99m)Tc) level and was further confirmed by the ESI-MS spectral data of a model compound [Re(NNPh)(L4)(L6)]+. It was found that both DTCs and bisphosphines have a significant impact on the lipophilicity of their cationic (99m)Tc-diazenido complexes. Results from a (99m)Tc-labeling efficiency experiment showed that 4-hydrazinobenzoic acid (HYBA) might be useful as a bifunctional coupling agent for (99m)Tc-labeling of small biomolecules. However, the (99m)Tc-labeling efficiency of HYBA is much lower than that of 6-hydrazinonicotinic acid (HYNIC) with tricine and trisodium triphenylphosphine-3,3',3''-trisulfonate (TPPTS) as coligands.[Abstract] [Full Text] [Related] [New Search]