These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cell-cell interaction-dependent regulation of N-acetylglucosaminyltransferase III and the bisected N-glycans in GE11 epithelial cells. Involvement of E-cadherin-mediated cell adhesion.
    Author: Iijima J, Zhao Y, Isaji T, Kameyama A, Nakaya S, Wang X, Ihara H, Cheng X, Nakagawa T, Miyoshi E, Kondo A, Narimatsu H, Taniguchi N, Gu J.
    Journal: J Biol Chem; 2006 May 12; 281(19):13038-13046. PubMed ID: 16537539.
    Abstract:
    Changes in oligosaccharide structures are associated with numerous physiological and pathological events. In this study, the effects of cell-cell interactions on N-linked oligosaccharides (N-glycans) were investigated in GE11 epithelial cells. N-glycans were purified from whole cell lysates by hydrazinolysis and then detected by high performance liquid chromatography and mass spectrometry. Interestingly, the population of the bisecting GlcNAc-containing N-glycans, the formation of which is catalyzed by N-acetylglucosaminyltransferase III (GnT-III), was substantially increased in cells cultured under dense conditions compared with those cultured under sparse conditions. The expression levels and activities of GnT-III but not other glycosyltransferases, such as GnT-V and alpha1,6-fucosyltransferase, were also consistently increased in these cells. However, this was not observed in mouse embryonic fibroblasts or MDA-MB231 cells, in which E-cadherin is deficient. In contrast, perturbation of E-cadherin-mediated adhesion by treatment with EDTA or a neutralizing anti-E-cadherin antibody abolished the up-regulation of expression of GnT-III. Furthermore, we observed the significant increase in GnT-III activity under dense growth conditions after restoration of the expression of E-cadherin in MDA-MB231 cells. Our data together indicate that a E-cadherin-dependent pathway plays a critical role in regulation of GnT-III expression. Given the importance of GnT-III and the dynamic regulation of cell-cell interaction during tissue development and homeostasis, the changes in GnT-III expression presumably contribute to intracellular signaling transduction during such processes.
    [Abstract] [Full Text] [Related] [New Search]