These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Accessible proteomics space and its implications for peak capacity for zero-, one- and two-dimensional separations coupled with FT-ICR and TOF mass spectrometry.
    Author: Frahm JL, Howard BE, Heber S, Muddiman DC.
    Journal: J Mass Spectrom; 2006 Mar; 41(3):281-8. PubMed ID: 16538648.
    Abstract:
    The number and wide dynamic range of components found in biological matrixes present several challenges for global proteomics. In this perspective, we will examine the potential of zero-dimensional (0D), one-dimensional (1D), and two-dimensional (2D) separations coupled with Fourier-transform ion cyclotron resonance (FT-ICR) and time-of-flight (TOF) mass spectrometry (MS) for the analysis of complex mixtures. We describe and further develop previous reports on the space occupied by peptides, to calculate the theoretical peak capacity available to each separations-mass spectrometry method examined. Briefly, the peak capacity attainable by each of the mass analyzers was determined from the mass resolving power (RP) and the m/z space occupied by peptides considered from the mass distribution of tryptic peptides from National Center for Biotechnology Information's (NCBI's) nonredundant database. Our results indicate that reverse-phase-nanoHPLC (RP-nHPLC) separation coupled with FT-ICR MS offers an order of magnitude improvement in peak capacity over RP-nHPLC separation coupled with TOF MS. The addition of an orthogonal separation method, strong cation exchange (SCX), for 2D LC-MS demonstrates an additional 10-fold improvement in peak capacity over 1D LC-MS methods. Peak capacity calculations for 0D LC, two different 1D RP-HPLC methods, and 2D LC (with various numbers of SCX fractions) for both RP-HPLC methods coupled to FT-ICR and TOF MS are examined in detail. Peak capacity production rates, which take into account the total analysis time, are also considered for each of the methods. Furthermore, the significance of the space occupied by peptides is discussed.
    [Abstract] [Full Text] [Related] [New Search]