These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In silico human and rat Vss quantitative structure-activity relationship models. Author: Gleeson MP, Waters NJ, Paine SW, Davis AM. Journal: J Med Chem; 2006 Mar 23; 49(6):1953-63. PubMed ID: 16539383. Abstract: We present herein a QSAR tool enabling an entirely in silico prediction of human and rat steady-state volume of distribution (Vss), to be made prior to chemical synthesis, preceding detailed allometric or mechanistic assessment of Vss. Three different statistical methodologies, Bayesian neural networks (BNN), classification and regression trees (CART), and partial least squares (PLS) were employed to model human (N=199) and rat (N=2086) data sets. The results in prediction of an independent test set show the human model has an r2 of 0.60 and an rms error in prediction of 0.48. The corresponding rat model has an r2 of 0.53 and an rms error in prediction of 0.37, indicating both models could be very useful in the early stages of the drug discovery process. This is the first reported entirely in silico approach to the prediction of rat and human steady-state volume of distribution.[Abstract] [Full Text] [Related] [New Search]