These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Antioxidant enzyme inhibitors enhance nitric oxide-induced cell death in U937 cells. Author: Yang ES, Park JW. Journal: Biochimie; 2006 Jul; 88(7):869-78. PubMed ID: 16540229. Abstract: Nitric oxide (NO), a radical species produced by many types of cells, is known to play a critical role in many regulatory processes, yet it may also participate in collateral reactions at higher concentrations, leading to cellular oxidative damage. The protective role of antioxidant enzymes against NO-induced oxidative damage in U937 cells was investigated in control and cells pre-treated with diethyldithiocarbamic acid, aminotriazole, and oxlalomalate, specific inhibitors of superoxide dismutase, catalase, and NADP(+)-dependent isocitrate dehydrogenase, respectively. Upon exposure to 1 mM S-nitroso-N-acetylpenicillamine (SNAP), the nitric oxide donor, to U937 cells, the viability was lower and the protein oxidation, lipid peroxidation and oxidative DNA damage reflected by an increase in 8-hydroxy-2'-deoxyguanosine, were higher in inhibitor-treated cells as compared to control cells. We also observed the significant increase in the endogenous production of reactive oxygen species, as measured by the oxidation of 2'7'-dichlorodihydrofluorescin as well as the significant decrease in the intracellular GSH level in inhibitor-treated U937 cells upon exposure to NO. Upon exposure to 0.2 mM SNAP, which induced apoptotic cell death, a clear inverse relationship was observed between the control and inhibitor-treated U937 cells in their susceptibility to apoptosis. These results suggest that antioxidant enzymes play an important role in cellular defense against NO-induced cell death including necrosis and apoptosis.[Abstract] [Full Text] [Related] [New Search]