These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reaction mechanism of the CCN radical with nitric oxide.
    Author: Jin L, Ding YH, Wang J, Sun CC.
    Journal: J Comput Chem; 2006 May; 27(7):883-93. PubMed ID: 16544348.
    Abstract:
    To investigate the possibility of the carbyne radical CCN in removal of nitric oxide, a detailed computational study is performed at the Gaussian-3//B3LYP/6-31G(d) level on the CCN + NO reaction by constructing the singlet and triplet electronic state [C(2)N(2)O] potential energy surfaces (PESs). The barrierless formation of the chain-like isomers NCCNO (singlet at -106.5, triplet cis at -48.2 and triplet trans at -47.6 kcal/mol) is the most favorable entrance attack on both singlet and triplet PESs. Subsequently, the singlet NCCNO takes an O-transfer to form the branched intermediate singlet NCC(O)N (-85.6), which can lead to the fragments CN + NCO (-51.2) via the intermediate singlet NCOCN (-120.3). The simpler evolution of the triplet NCCNO is the direct N-O rupture to form the weakly bound complex triplet NCCN...O (-56.2) before the final fragmentation to NCCN + (3)O (-53.5). However, the lower lying products (3)NCN + CO (-105.6) and (3)CNN + CO (-74.6) are kinetically much less competitive. All the involved transition states for generation of CN + NCO and NCCN + (3)O lie much lower than the reactants. Thus, the novel reaction CCN + NO can proceed effectively even at low temperatures and is expected to play a role in both combustion and interstellar processes. Significant differences are found on the singlet PES between the CCN + NO and CH + NO reaction mechanisms.
    [Abstract] [Full Text] [Related] [New Search]