These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mechanistic studies of the photocatalytic oxidation of trichloroethylene with visible-light-driven N-doped TiO2 photocatalysts. Author: Joung SK, Amemiya T, Murabayashi M, Itoh K. Journal: Chemistry; 2006 Jul 17; 12(21):5526-34. PubMed ID: 16548017. Abstract: Visible-light-driven TiO2 photocatalysts doped with nitrogen have been prepared as powders and thin films in a cylindrical tubular furnace under a stream of ammonia gas. The photocatalysts thus obtained were found to have a band-gap energy of 2.95 eV. Electron spin resonance (ESR) under irradiation with visible light (lambda > or = 430 nm) afforded the increase in intensity in the visible-light region. The concentration of trapped holes was about fourfold higher than that of trapped electrons. Nitrogen-doped TiO2 has been used to investigate mechanistically the photocatalytic oxidation of trichloroethylene (TCE) under irradiation with visible light (lambda > or = 420 nm). Cl and O radicals, which contribute significantly to the generation of dichloroacetyl chloride (DCAC) in the photocatalytic oxidation of TCE under UV irradiation, were found to be deactivated under irradiation with visible light. As the main by-product, only phosgene was detected in the photocatalytic oxidation of TCE under irradiation with visible light. Thus, the reaction mechanism of TCE photooxidation under irradiation with visible light clearly differs markedly from that under UV irradiation. Based on the results of the present study, we propose a new reaction mechanism and adsorbed species for the photocatalytic oxidation of TCE under irradiation with visible light. The energy band for TiO2 by doping with nitrogen may involve an isolated band above the valence band.[Abstract] [Full Text] [Related] [New Search]